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Abstract

‘Big Science’ - that  is, science which involves large collaborations with dedicated facilities, and  
involving large data volumes and multinational  investments – is  often seen as  different  when it 
comes to data management and preservation planning. Big Science handles its data differently from 
other  disciplines  and  has  data  management  problems that  are  qualitatively  different  from other 
disciplines. In part, these differences arise from the quantities of data involved, but possibly more  
importantly  from  the  cultural,  organisational  and  technical  distinctiveness  of  these  academic 
cultures. Consequently, the data management systems are typically and rationally bespoke, but this 
means that the planning for data management and preservation (DMP) must also be bespoke.

These differences are such that ‘just read and implement the OAIS specification’ is reasonable Data 
Management and Preservation (DMP) advice, but this bald prescription can and should be usefully 
supported by a methodological ‘toolkit’, including overviews, case-studies and costing models to 
provide guidance on developing best practice in DMP policy and infrastructure for these projects, as  
well as considering OAIS validation, audit and cost modelling.

In this paper, we build on previous work with the LIGO collaboration to consider the role of DMP 
planning within these big science scenarios,  and discuss how to apply current  best  practice.  We 
discuss  the  result  of  the  MaRDI-Gross  project  (Managing  Research  Data  Infrastructures  –  Big 
Science),  which  has  been  developing  a  toolkit  to  provide  guidelines  on  the  application  of  best  
practice  in  DMP  planning  within  big  science  projects.  This  is  targeted  primarily  at  projects’  
engineering managers, but intending also to help funders collaborate on DMP plans which satisfy the 
requirements imposed on them.
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Introduction: The Big-Science Paradigm

There appears to be a rough consensus that many of the central concerns regarding 
data management and preservation (DMP) for the majority of academic disciplines 
relate to the management of a large collection of disparate data generated in a 
relatively undisciplined manner by a wide variety of independent researchers, who are 
mainly concerned with their own research. Thus the concerns are about the usability 
of repositories, the challenges of persuading researchers to deposit their data, and how 
best to manage the citation of data, with additional concerns about how researchers 
may best receive credit for the data they have collected.

However, implicit within this view appears to be a rather simple conceptual model 
of what it is that researcher-users actually do to create the data. Researchers: (i) obtain 
grants, which (ii) they use to generate data within their own research methods which 
(iii) they manage locally and then (iv) share either as datasets or linked to 
publications. Much of the interest in research information systems within this area 
presumes a rather simple relationship between (i), (ii) and (iv), and much of the DMP 
effort appears to be concerned with persuading researchers to do step (iii) better, 
possibly with suitable institutional assistance, cajoling or prescription.

This model is less appropriate for large-scale projects in the physical sciences, 
which have decades of experience with data management and sharing, at scale, 
incorporating a data management workflow that is different from this paradigmatic 
one under each of its four headings. This incompleteness suggests firstly that the DMP 
solutions created under this paradigm, when applied to other disciplines, may not be 
as generally applicable as expected; and secondly that there are data management 
problems outside those automatically considered by that paradigm, which are 
nonetheless well-understood, and for which practical solutions already exist.

For our purposes, such ‘Big Science’ projects tend to share many features which 
distinguish them from other research disciplines. These include the following:

1. The projects are large collaborations, involving hundreds or thousands of 
researchers from many institutions, typically in different countries.

2. The projects last many years, with extended planning and set up phases, 
and long lifetimes of experimental running, data collection and analysis.

3. The projects are funded with long term budgets, and typically from 
multiple sources, thus requiring complex legal agreements on resource 
provision and ownership.

4. The projects typically establish dedicated experimental facilities, with 
their own structures and dedicated technical staff, including computing 
support.

5. The projects typically generate large volumes of complicated and 
instrument-specific data (1–10PB per year, with exabyte-per-year rates 
anticipated in the next decade).
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The key feature, from the point of view of this paper, is that this is facilities 
science. There is a core facility, with multinational funders, a multi-decade existence, 
and a conceptual and administrative separation between the elaborately-engineered 
resource and the research scientists.

Particle physics has the longest experience with this model of doing science, most 
famously in the Large Hadron Collider (LHC) collaboration centred at CERN1, but 
gravitational wave physics (e.g. LIGO2) and radio astronomy (e.g. SKA3) have or will 
have similar or larger collaboration sizes and data volumes. Other areas of astronomy 
have long experience with internationally shared telescope facilities, though working 
at a different scale. Structural sciences (i.e. studies into the micro- and nano-scale 
structure of matter) are moving towards this model of working, where large-scale 
facilities, such as neutron and synchrotron sources, support many individual scientists 
working within the traditional DMP paradigm. However, the facility itself – with its 
continuity of funding over a long period, dedicated infrastructure and specialist staff – 
has the characteristics of “big science” and can leverage those characteristics  to 
provide more systematic data management for its user community (Flannery et al., 
2009).

Preservation policy and practice in big science deals with large volumes of data in 
large (100s to 1000s) collaborations, with technically sophisticated users and 
computing support. The data volume is the least significant feature in the present 
context, since it is ‘only’ a technical problem; the other two features change the game.

This scale of working produces some simplifications:

• It is well resourced: DMP is not the responsibility of quarter-time junior 
researchers, but a key concern of the project’s engineering management.

• There is a collaborative ethos, which has data sharing at its core. Data, 
once acquired, goes directly into the archive and is retrieved from there 
for processing by researchers.

However the scale also produces a variety of complications:

• There are multiple funders in multiple countries with various, sometimes 
conflicting, requirements relating to data management and dissemination.

• The multiplicity of funders often means that no one can dictate terms.

• Experiments and their datasets are governed by networks of  Memoranda 
of Understanding and  Service Level Agreements and in-collaboration 
decision-making processes which, however intricate the process, are 
fundamentally consensus-based.

• The intellectual property of the data is often complex.

Thus the nature of big science determines that it cannot benefit from the 
considerable effort going into providing technical and software support for DMP 

1 CERN - the European Organization for Nuclear Research: www.cern.ch 
2 Laser Interferometer Gravitational Wave Observatory: www.ligo.caltech.edu 
3 The Square Kilometre Array: http://www.skatelescope.org/ 
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planning. It is in this context that the advice of a recent JISC-funded study of data at 
this scale to “just read and implement OAIS” (Gray et al., 2012) is more practical than 
it appears. Facilities-scale science projects have the financial and engineering 
resources, and technical expertise to produce bespoke DMP plans and data 
management systems. However, what must be avoided is pointless reinvention, and so 
there is an outstanding need for a fast-track to an optimal solution. This is where 
funder support can be helpful in supporting the relevant technical personnel by 
connecting them to high-level DMP best practice.

The MaRDI-Gross project4 is building on previous work by developing practical 
advice for large-scale DMP planning. It is based on the insights of the OAIS reference 
model, and includes discussions on cost modelling, with a target audience of big 
science practitioners and funders. The emphasis has largely been on the UK 
community associated with the Science and Technology Facilities Council5 (STFC), 
the major funder of big science in the UK. The guidelines apply more widely, as much 
of the work of STFC is in collaboration with similar bodies in other countries and with 
cross-national institutions, and thus the guidelines can also apply in those cases. The 
goal of the project is to bring big science practitioners up to speed with the current 
best practice, and to equip funders with the means to critically engage with DMP 
planners, giving both groups a rapid boost towards relevant disciplinary best practice. 
In the rest of this paper we consider the factors considered in these guidelines, and 
discuss the implications of relevance for the wider DMP community. The full 
guidelines can be found in Bicarregui et al. (2012).

Policy Drivers

We first consider the various high-level policy drivers for DMP planning. Big science 
projects are high-profile, and need to take special account of the high level interests 
concerning the longer term goals of their discipline and of society at large.

Policy Requirements of Funders

Policy drivers within big science are largely defined by governmental and 
inter-governmental policy frameworks, which determine the agreements within which 
international big science is undertaken. Thus in 2011, Research Councils UK (RCUK) 
published a set of ‘Common Principles on Data Policy’(RCUK, 2011). The RCUK 
principles are informed by the earlier OECD ‘Principles and Guidelines for Access to 
Research Data from Public Funding’ (OECD, 2007) and in turn inform the 
discipline-specific policies of the UK research councils. In particular, the STFC’s 
policies are tailored to the needs of big science projects (STFC, 2011). These include 
specifying that big science projects and facilities should have a DMP plan under the 
control of their management and science communities; noting that these policies and 
restrictions are typically subject to international agreement and to legislation in 
different countries; and recognising that resources need to be released for data 
management, as appropriate for the long term needs of its designated community.

4 The MaRDI-Gross project: http://mardigross.jiscinvolve.org/wp/ 
5 Science and Technology Facilities Council (STFC): www.stfc.ac.uk 
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Open Data

Further policy considerations include the approach to open data. STFC’s data sharing 
principles endorse the international push towards such data sharing in the more 
general context of scholarly research. In the US, the NSF’s GC-1 document states in 
Section 41 that:

“[NSF] expects investigators to share with other researchers, at 
no more than incremental cost and within a reasonable time, the 
data, samples, physical collections and other supporting 
materials created or gathered in the course of the work” (NSF, 
2010).

Thus funders are setting policy so that scientific data should generally be 
universally available, partly because it is usually publicly paid for, but also because 
the public display of evidence is a necessary part of science. Of course, in practice it is 
not as simple, and a host of technical, political, social and personal issues complicate 
the social, evidential and moral arguments for general data release.

The arguments against general data releases are practical ones: data releases are not 
free, and may have significant costs. Many of these costs come from data 
preservation, since it is archived data products that are the most naturally releasable 
objects: releasing raw or low-level data may be cheap, but may also have little value, 
requiring specialist knowledge. Such data releases may even have a negative value, if 
they foster misunderstandings which are time-consuming to counter. In consequence, 
the ‘open data question’ overlaps with the question of data preservation; if the costs of 
data preservation are satisfactorily handled, then a significant subset of the practical 
problems with open data release will disappear.

The above arguments focus on the costs to the data owners, and the benefits to 
society, of data release. The costs are reasonably objective, and while it might be 
difficult to estimate them to much better than an order of magnitude, they can be 
grounded in money. In contrast, the latter balancing benefits are often diffuse, and 
involve educational and outreach benefits which are real, but which can only be 
translated into numbers through a formal cost-benefit analysis, as used in 
environmental economics, for example. We believe this is an interesting topic, which 
it would be instructive to explore further.

Some questions of data sharing can be discussed using the OAIS notion of the 
Designated Community. Higher level data products contain less detail than lower level 
or raw datasets; they are also intended to serve broader communities, and are more 
expensive to generate in terms of processing. When a scientist chooses between a 
project’s data products, the choice represents a trade-off involving the amount of time 
they can invest in understanding the data product, the degree of support they receive 
from colleagues and the data owners, and the subtlety of the question they wish to 
address (more subtle distinctions might be erased by higher level products, but might 
be spuriously detected in poorly-understood raw data). On the other side of the 
exchange, a project will have a formal or informal model of whom it is serving by the 
provision of data, and will design data products, and allocate costs, accordingly.
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Data Preservation Objectives

A crucial question for DMP policy is: “what precisely are the preservation goals?” 
One should not assume that everything should be preserved, indefinitely, because this 
would be far too expensive. Data preservation objectives are influenced by the needs 
of the discipline. As an observational science, astronomy data is generally repeatable, 
but some of the most precious astronomical data records unpredictable, transient 
events or long-timescale secular changes. Astronomical data is potentially useful 
almost indefinitely and, because its object of study is in some sense fundamentally 
simple (there is only one sky), it is also broadly intelligible almost indefinitely, so it is 
reasonable for its target preservation time to be greater.

High Energy Physics (HEP) data is somewhat different,  as the discipline’s 
community is generally very much in control of what it observes through the 
successive generations of experiments. A consequence of this is that, firstly, HEP 
experiments tend to become obsolete with each technological generation, and 
secondly the complexity of the apparatus makes it hard to communicate into the future 
the understanding sufficient to reuse the data. Experimental apparatus is generally 
understood better as it is used, so data gathered early in an experiment will be 
periodically reanalysed with increased accuracy. However, this understanding is 
generally not formally recorded, but is communicated through wikis, workshops and 
other informal means. Even if all records were preserved with complete fidelity, an 
archive would still be missing the word-of-mouth information which a new 
postgraduate (for example) needs to acquire. In OAIS terms, the Representation 
Network for HEP data is particularly intricate, goes beyond format description (the 
most commonly considered form of representation information in many preservation 
scenarios) to include semantic descriptions, software and tacit knowledge, and it may 
be infeasible to gather all the Representation Information necessary to let a naive 
researcher make sense of it. Nevertheless, South (2011) describes scenarios in which 
HEP data should be reanalysed some decades after an experiment has finished, and 
describes ongoing work to preserve data for long enough to enable post-experiment 
exploitation. These scenarios have in common a commitment of a few full time 
equivalent (FTE)s of staff to actively conserve and exploit the data, acting as living 
“Representation Information.”

Amongst open data advocates there is often an automatic expectation that 
‘everything should be preserved’ so that an experiment can be redone, results 
reanalysed, or an analysis repeated later. Is this actually true? Or if it is desirable, how 
much effort should be expended, in the face of the inevitable costs? In fact, it is not 
always the case that an experiment can be redone, because it is not always feasible to 
document it in enough detail that the measurements can be remade. For similar 
reasons, if the data analysis is particularly complicated, or requires a subtle 
understanding of the behaviour of a particular instrument, it may not be feasible to 
document that analysis in enough detail. There is therefore a case that at least some 
details of the experimental environment – digital as well as physical – are not 
reasonably preservable, and that as a result little effort should be expended on 
preserving them, if well-documented higher level data products are available and 
intelligible. We should stress that we are not advocating deliberately deleting raw data 
– it might be useful, and it might be usable – but simply noting that one should not 
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overstate its value. Archivists are familiar with such choices in their retention and 
disposal policies, and these choices are particularly acute for big science.

Technical Frameworks

There are key technologies that someone producing a big science project DMP plan 
should be aware of, and thus we discuss the technical frameworks relevant to the good 
management of data. In particular, the OAIS model (CCSDS, 2002) is seen to be of 
particular relevance as a major international standard. We do not describe the OAIS 
model here, but note that it provides a generally applicable framework and vocabulary 
that identifies the key aspects of data management and preservation within open 
archives, and describes core functional components and workflows. However, there is 
no general recipe to implement OAIS, and big science systems are large or unusual 
enough that no one recipe is likely to be applicable. As a consequence, there is a need 
for profiles of OAIS and exemplars for its use, so that big science projects can rapidly 
adapt the standard to their needs. The CASPAR project6 concretised the model by 
developing a set of methods and tools for several stages of the digital preservation 
lifecycle, as defined by OAIS. There were three testbeds providing validation; the 
science data testbed was provided by STFC and the European Space Agency. The 
outputs of the project are collected in Giaretta (2011). Two aspects of this project are 
particularly applicable for big science: preservation analysis, and the preservation 
toolkit.

The preservation analysis methodology (Conway et al., 2011) is designed to ensure 
that the archived science data is a truly reusable asset. The methodology defines a 
number of analysis steps to produce an actionable preservation plan, satisfying a 
well-defined preservation objective. To carry out preservation that will allow future 
users to use the data within new contexts, the information to reuse the data is captured 
in a formal model of the information dependencies and the alternative information 
required if the environment changes. This can then be used to design data packages 
and preservation actions. Although these analyses may at first seem burdensome, we 
expect that since big science projects need to develop highly functional data 
management systems, many of the questions in the analysis will already have answers. 

The CASPAR implementation provided integrated tools to support the preservation 
process as described in OAIS functional model, with a particular emphasis on 
managing representation information to support the contextual use of data. These tools 
were prototypes at the end of CASPAR and their development is being continued in 
the SCIDIP-ES project7 as a web service infrastructure.

The OAIS model can be criticised for being so high-level that “almost any system 
capable of storing and retrieving data can make a plausible case that it satisfies the 
OAIS conformance requirements” (Rosenthal et al., 2005), so it is important to be able 
to provide assurances that the project has achieved more than simply producing the 
statement “we promise not to lose the data.” This involves both defining more detailed 
requirements and devising more stringent and auditable assessments of an archive’s 
actual ability to be appropriately responsive to technology change (for example, see 

6 The CASPAR project: http://www.casparpreserves.eu/ 
7 The SCIDIP-ES project: http://www.scidip-es.eu/ 
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Giaretta, 2011). Funders are also likely to require reassurance that the DMP plan that a 
project has proposed is achievable. The standard ‘audit and certification of trustworthy 
digital repositories’ (CCSDS, 2012) offers a detailed specification of criteria for 
auditing digital repositories. It is possible to imagine levels of certification where 
different criteria may be appropriate for projects of different scale, or where the funder 
has different requirements for the resulting data. High profile big science projects 
might reasonably be expected to achieve the highest certification level.

The Practicalities of DMP Planning for Big Science

We add some observations on some other practical aspects of DMP for big science.

Data Release Planning

DMP plans need to consider how to manage the release of data. When large ‘source’ 
facilities service the work proposals of individual scientists or small groups, they 
typically release data by making it public in their facility archive, after an embargo 
period. Large collaborations instead typically release data in large blocks.

The LIGO collaboration has agreed an algorithm to release data triggered by a 
range of occurrences, including the publication of papers quoting the data, when the 
collaboration has probed a given volume of space-time, or when a certain time has 
elapsed after the start of the current phase of the experiment (Anderson & Williams, 
2013). The goal was to balance the collaboration members’ need for privileged access 
to the data, with the funder’s desire to see the data made public as soon as possible. 
Large astronomical surveys tend to release higher level data products either after an 
observing season is over, or after each complete pass over a survey area. The release 
is not immediate, but takes place after data reduction and quality assurance checks. 
The ATLAS experiment at the Large Hadron Collider8 is experimenting with a service 
called ‘Recast’ (Cranmer & Yavin, 2010), which will take a phenomenological model 
as input from a user, and analyse the data in the light of that model. This system 
means that searches can be performed on the data by physicists not connected to the 
collaboration, without requiring them to become familiar with the detailed structure of 
the data. This is effectively a type of high-level data product, which maintains control 
of the data without the obligation of documenting a data product, and without 
exposing them to the costs of handling external analysis based on misunderstandings 
of the data.9

Software Preservation

There is often substantial important information encoded in ways which are only 
effectively documented in software. There is therefore an obvious case for preserving 
this software. However, software typically includes the libraries it depends upon, the 
operating system (OS) it uses, and the configuration and start-up instructions. The OS 
may require particular hardware, the software may be qualified for a very small range 
of OSs and library versions, and it may be hard to gather all of the configuration 
information (Matthews et al., 2010). Thus software preservation is complex.

8 ATLAS: http://atlas.ch/
9 In OAIS terms, the Recast system itself should be considered as part of the representation information.
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However, it is not certain that software preservation is necessary. If the data 
products are well enough described, then re-running the analysis may be unnecessary, 
or not worth the investment required for the software preservation. This may be both a 
cheaper and more reliable way of carrying the experiment’s information content into 
the future, and this trade-off is more in favour of data preservation as we consider the 
longer term. These two options are not exclusive: one can preserve data and software. 
However, solutions for software preservation generally focus on active curation in the 
sense of preserving software through continuing use. This can be successful. 
However, the sustainability of software then depends on the continuing vitality of a 
community, so it is brittle in the face of significant funding gaps. A suitably open 
process can be encouraged, but while this may need fewer resources it probably needs 
more commitment, and is even less predictable than a funded solution. Further, an 
early software version, though later deprecated, may still be needed to regenerate or 
validate a historical release of a data product. Despite these qualifications, assuming 
continued support is still a reasonable software preservation strategy.

Costs and Cost Models

There is a good deal of detailed information and some modelling of the costs of digital 
preservation, e.g. the KRDS2 study (Beagrie et al., 2010), the LIFE3 project (Hole et 
al., 2010), and the PLANETS10 project. However, this has not created a strong 
consensus and the variation in preservation contexts may mean that no simple 
consensus is possible. Note that these projects considered what one might call ‘live’ 
archives, where the data has an active community of individuals with expertise in 
using the data. The situation changes when considering long term preservation, where 
data is not used for extended periods and there are no living sources of advice about 
the data. In the case of ‘unaccessed’ data, there is even less in the way of robust cost 
modelling, although it seems likely that the cost model for this would be dominated by 
the costs of byte storage, rather than staff.

There is probably little actual experience of digital archives working entirely 
without advice from human curators. Information from two astronomy archives 
considered in Gray et al. (2012) was found to be consistent. The two archives held in 
the order of 100TB each; one spent 25–30 staff years on development and both spend 
in the range of 3–6 staff years per year on maintenance and support; each spends 
between a quarter and a third of its budget on hardware. The HEP community is now 
constructing more detailed plans for data preservation, and the associated costs. South 
(2011) estimates that a long term archive would cost 2–3 FTEs for 2–3 years after the 
end of the experiment, followed by 0.5–1.0 FTE per year, per experiment spent on the 
archive’s preservation. They compare this to the hundreds of FTEs spent on the 
running of the experiment, and on this basis claim an archival staff investment of 1% 
of the peak staff investment, to obtain a 5–10% increase in output.

Ingest and Acquisition

In astronomical, HEP and gravitational wave contexts, archive ingest is generally 
tightly integrated with the system for day-to-day data management, as data goes 
directly to the archive on acquisition and is retrieved from that archive as part of 

10 The Planets Project: http://www.planets-project.eu/ 
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normal operations. On the other side of the archive, projects will generate and 
disseminate data products in their normal business, without regarding these as archival 
objects. Thus the submissions to the archive may consist of both raw and analysed 
data, and the objects disseminated will include either raw or processed data, or both. 
The long term planning in the LIGO DMP plan, for example, is therefore less 
concerned with setting up an archive than with the adjustments required to make an 
existing data management system robust and more accessible for the long term. This 
means, in turn, that some fraction of the archive’s ingest costs (associated with quality 
control and metadata, for example) will be covered by normal operations, so the 
marginal costs of the additional long term archival ingest and dissemination are 
probably both rather low and typically borne by infrastructure. Thus if the associated 
activities can be contrived to overlap with normal operations, then the costs directly 
associated with the archive may be significantly decreased.

Discussion

The most obviously feature of ‘big science’ in our definition is, of course, the ‘big 
data’ aspect. It is characteristic of such projects that they are generally willing to deal 
with data volumes at the upper end of what is feasible, if necessary by designing 
instruments to produce data volumes at levels predicted to be manageable by the time 
the instrument comes online. Without discounting the technical challenges of such 
data rates, the key implication is that day-to-day data management is a core concern of 
the project, which is designed and funded accordingly. As a consequence of this:

• Data preservation is straightforwardly identified as an extension of data 
management. The former is not trivial, but some aspects of data 
preservation are handled “for free” by the necessary existence of a data 
management infrastructure, without which the experimental apparatus will 
be unusable.

• In particular, the problems of data ingest, which loom so large in much of 
the DMP literature, are reduced to the problem of documenting and 
adjusting archival metadata, and the identification of suitable 
representation information.

• Big science projects are inevitably also large-scale engineering projects, 
familiar with the management of cost estimates, so that the costing of 
DMP can be built in to the relationship between funders and funded.

So, although at first glance the development of a DMP plan appears to be a 
burdensome addition to the engineering of a big science project, there may not be a 
huge amount to do. Much big science is in the happy position of the DMP problem 
being already solved to first order, and thus a DMP planning exercise becomes a 
question of formalising existing practice.

It can be seen that big science projects are often very different from other forms of 
research, and although some disciplines have similar characteristics (e.g. population 
studies in social science and medicine have similar long time scales and specialist 
teams; clinical trials in medicine require a certified data management process), the 
situation in the majority of research disciplines is very different and requires a 
different approach. This naturally leads to questions of:
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1. At what point does a repository cross the boundary between a ‘small’ 
repository and a ‘big science’ one?

2. How can institutions benefit from the presence of a big science 
repository?

3. Are there any lessons for smaller scale repositories?

Big science repositories are solving research and practice problems in DMP; 
institutional repositories, by contrast, are solving organisational, cultural, educational, 
usability and scalability problems which the big science DMP planners are able to 
ignore in part. The educational and usability problems are secondary ones, since the 
constituency is sufficiently motivated to educate itself, by the need to gain access to 
the data, which is only available through the DMP system. This is the result of the 
prior organisational decisions to route all data through a single preservation-ready 
archive. For institutional repositories, scalability problems should be addressed by 
looking at (the technologies underpinning) the big science solutions. Something that 
works at the largest scales will also work at the merely large scale.

In consequence, to address question 1 above, the boundary between a ‘simple’ and 
a ‘big science’ repository is perhaps not simply a matter of scale, but instead lies in 
the presence of significant technical challenges that are somehow intrinsic to the 
nature of the data in question, so that dedicated infrastructure is needed to make 
handling the data tractable at all. Having a large data volume represents one type of 
technical challenge, but others might include having to deal with particularly 
heterogeneous data, or rapidly changing or otherwise non-traditional data (how would 
one preserve the internet’s connectivity graph, for example, or a service-oriented 
website?), or dealing with particular assurance requirements (e.g. clinical trials data). 
In this sense, we can perhaps regard ‘big science’ problems as one of a category of 
‘next generation data management problems’, which are characterised by having 
significant unsolved technical preservation problems. This does not imply that the 
‘simple’ repositories are easy, or fully solved: ‘simple’ repositories might be more 
complex overall, if producing a ‘simple’ repository requires simultaneously solving a 
number of organisational, cultural, educational and usability issues. Perhaps, 
therefore, a ‘simple’ repository is one where the required underlying techniques are 
well understood, so that attention can turn to the applied problem of implementation 
within a particular institutional or disciplinary context. Thus - and touching on both 
questions 2 and 3 - ‘next generation repositories’ can feed technical solutions into 
repositories at institutional or disciplinary scales.

This is where we believe the earlier report’s ‘light touch’ advice (“here’s OAIS; get  
on with it”) is valuable. For a ‘simple’ repository, similar repositories have solved 
similar problems in similar ways, but a ‘next generation’ repository has few or no 
precedents, and cannot be evaluated in the same way. In this situation, OAIS 
represents a principled and broadly validated approach to archive design, which asks 
very pertinent, but still very general, questions of any repository, and which supports a 
natural route to internal and external criticism, up to and including an audit.
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